“School of Biological Sciences”
Back to Papers HomeBack to Papers of School of Biological Sciences
Paper IPM / Biological Sciences / 13290 |
|
||||||||||||
Abstract: | |||||||||||||
A Profile Hidden Markov Model (PHMM) is a standard form of a Hidden Markov Models used for modelling protein and DNA sequence families based on multiple alignment. In this paper, we implement BaumâWelch algorithm and the Bayesian Monte Carlo Markov Chain (BMCMC) method for estimating parameters of small artificial PHMM. In order to improve the prediction accuracy of the estimation of the parameters of the PHMM, we classify the training data using the weighted values of sequences in the PHMM then apply an algorithm for estimating parameters of the PHMM. The results show that the BMCMC method performs better than the Maximum Likelihood estimation.
Download TeX format |
|||||||||||||
back to top |