“School of Cognitive Sciences”

Back to Papers Home
Back to Papers of School of Cognitive Sciences

Paper   IPM / Cognitive Sciences / 13362
School of Cognitive Sciences
  Title:   Evolving Takagi-Sugeno fuzzy model based on switching to neighboring models
  Author(s): 
1.  A. Kalhor
2.  B. Araabi
3.  C. Lucas
  Status:   Published
  Journal: Applied Soft Computing
  Vol.:  13
  Year:  2013
  Pages:   939-946
  Supported by:  IPM
  Abstract:
In this paper, we propose a new online identification approach for evolving Takagi–Sugeno (TS) fuzzy models. Here, for a TS model, a certain number of models as neighboring models are defined and then the TS model switches to one of them at each stage of evolving. We define neighboring models for an in-progress (current) TS model as its fairly evolved versions, which are different with it just in two fuzzy rules. To generate neighboring models for the current model, we apply specially designed split and merge operations. By each split operation, a fuzzy rule is replaced with two rules; while by each merge operation, two fuzzy rules combine to one rule. Among neighboring models, the one with the minimum sum of squared errors – on certain time intervals – replaces the current model.
To reduce the computational load of the proposed evolving TS model, straightforward relations between outputs of neighboring models and that of current model are established. Also, to reduce the number of rules, we define and use first-order TS fuzzy models whose generated local linear models can be localized in flexible fuzzy subspaces. To demonstrate the improved performance of the proposed identification approach, the efficiency of the evolving TS model is studied in prediction of monthly sunspot number and forecast of daily electrical power consumption. The prediction and modeling results are compared with that of some important existing evolving fuzzy systems.

Download TeX format
back to top
scroll left or right