“School of Mathematics”

Back to Papers Home
Back to Papers of School of Mathematics

Paper   IPM / M / 17072
School of Mathematics
  Title:   On the subgroup perfect codes in Cayley graphs
  Author(s):  Zeinab Akhlaghi (Joint with Y. Khaefi and B. Khosravi)
  Status:   Published
  Journal: Des. Codes Cryptogr.
  Vol.:  91
  Year:  2023
  Pages:   55-61
  Supported by:  IPM
  Abstract:
Let �´ = Cay(G, S) be a Cayley graph on a ï¬�nite group G. A perfect code in �´ is a subset C of G such that every vertex in G \ C is adjacent to exactly one vertex in C and vertices of C are not adjacent to each other. In Zhang and Zhou (Eur J Comb 91:103228, 2021) it is proved that if H is a subgroup of G whose Sylow 2-subgroup is a perfect code of G, then H is a perfect code of G.AlsotheyprovedthatifG is a metabelian group and H is a normal subgroup of G, then H is a perfect code of G if and only if a Sylow 2-subgroup of H is aperfect code of G. As a generalization, we prove that this result holds for each ï¬�nite group G. Also they proved that if G is a nilpotent group and H is a subgroup of G, then H is a perfect code of G if and only if the Sylow 2-subgroup of H is a perfect code of G.Wegeneralize this result by proving that the same result holds for every group with a normal Sylow 2-subgroup. In the rest of the paper, we classify groups whose set of all subgroup perfect codes forms a chain of subgroups and also we determine groups with exactly two proper non-trivial subgroup perfect codes.

Download TeX format
back to top
scroll left or right