“School of Mathematics”

Back to Papers Home
Back to Papers of School of Mathematics

Paper   IPM / M / 452
School of Mathematics
  Title:   Local-Global principle for annihilation of general local cohomology
  Author(s): 
1.  Sh. Salarian
2.  J. Asadollahi
3.  K. Khashyarmanesh
  Status:   Published
  Journal: Colloq. Math.
  No.:  1
  Vol.:  87
  Year:  2001
  Pages:   129-136
  Supported by:  IPM
  Abstract:
Let A be a Noetherian ring, let M be a finitely generated A-module and let Φ be a system of ideals of A. We prove that, for any ideal \fraka in Φ, if, for every prime ideal \frakp of A, there exists an integer k(\frakp), depending on \frakp, such that \frakak(\frakp) kills the general local cohomology module HΦ\frakpj(M\frakp) for every integer j less then a fixed integer n, where Φ\frakp:={\fraka\frakp:\fraka ∈ Φ}, then there exists an integer k such that \frakakHΦj(M)=0 for every j < n.

Download TeX format
back to top
scroll left or right