“School of Mathematics”

Back to Papers Home
Back to Papers of School of Mathematics

Paper   IPM / M / 471
School of Mathematics
  Title:   Ideal topologies, local cohomology and connectedness
  Author(s): 
1.  K. Divaani-Aazar
2.  P. Schenzel
  Status:   Published
  Journal: Math. Proc. Cambridge Philos. Soc.
  Vol.:  131
  Year:  2001
  Pages:   211-226
  Supported by:  IPM
  Abstract:
Let \fraka be an ideal of a local ring (R,\frakm) and let N be a finitely generated R-module of dimension d. It is shown that Hd\fraka (N) ≅ H\frakmd (N)/∑n ∈ \BbbN < \frakm > (0:H\frakmd(N)\frakan), where for an Artinian R-module X we put < \frakm > X=∩n ∈ \BbbN \frakmn X. As a consequence several vanishing and connectedness results are deduced.

Download TeX format
back to top
scroll left or right