“Papers of School of Mathematics”
Pages:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
1301. M. R. Koushesh,
One-point extensions and local topological properties,
Bull. Aust. Math. Soc. 88(2013), 12-16 [abstract]
1302. Sh. Heidarkhani,
On a class of systems of n Neumann two-point boundary value Strum-Liouville type equations,
Bull. Iranian Math. Soc. 39(2013), 821-840 [abstract]
1303. K. Bahmanpour and R. Naghipour (Joint with M. Sedghi),
Minimaxness and cofinitemess properties of local cohomology modules,
Comm. Algebra 41(2013), 2799-2814 [abstract]
1304. S. Babaie-Kafaki,
A new proof for the sufficient descent condition of Andrei's scaled conjugate gradient algorithms,
Pacific J. Optim. 9(2013), 23-28 [abstract]
1305. S. Babaie-Kafaki ,
On the sufficient descent property of the Shanno's conjugate gradient method,
Optim. Lett 7(2013), 831-837 [abstract]
1306. S. Babaie-Kafaki (Joint with M. Fatemi),
A modified two-point stepsize gradient algorithm for unconstrained minimization,
Optimization Methods and Software 28(2013), 1040-1050 [abstract]
1307. N. Jafari Rad (Joint with M. Chellali),
Strong equality between the Roman domination and independent Roman domination in trees,
Discussiones Mathematicae Graph Theory 33(2013), 337-346 [abstract]
1308. S. Alikhani,
The domination polynomial of a graph at -1,
Graphs Combin. 29(2013), 1175-1181 [abstract]
1309. Sh. Asgari (Joint with A. Haghany and Y. Tolooei),
T-Semisimple modules and t-semisimple rings,
Comm. Algebra 41(2013), 1882-1902 [abstract]
1310. A. R. Nasr-Isfahani,
On a quotient of skew polynomial rings,
Comm. Algebra 41(2013), 4520-4533 [abstract]
back to top
Pages:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263